
REPORT DOC. IMj MTATION PAGE i~OFU Ao. 0704.01

1. AEC AA238 078 3."E-R" TPEA "-DTE= o" "

4.7FL A---sI Final: 09 Jan 1991 to 01 Mar 1993
f' 4 TILE ND SBTILE | -- 5. FUNDING NUMBERS

Tartan Inc., Tartan Ada Sun/96MC, Version 4.0, Sun3/60 (Host) to Intel ICE960/25
on an SunOS vers 4.0.3 (Target), 90121011.11122

6. AUTHOR(S) o a tIABG'AVF ,ELECTE
~JUL 02 1991

7. PRFOMINGORGNIZAIONNAME(S)ANDADDRSS(S)W8. PERFORMING ORGANIZ'ATION_ t REPORT NUMBER
IABG-AF rdutiaige-Betriebsgeselschaft REOTNMR

Dept. SZT/ Einsteinstrasse 20, IAGB-VSR 081
D-8012 Ottobrunn
FEDERAL REPUBLIC OF GERMANY
9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION COOE
Approved for public release; distribution unlimited.

13. ABSTPACT (Maximum 200 wors)

Tartan Inc, Tartan Ada Sun/96MC Version 4.0, Sun 3/60 (Host) to Intel ICE960/25 on an SunOS vers 4.0.3 (Target), ACVC
1.11.

91-03867

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 1_._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE COOE

17 SECURITY CLASSIFICATION 1. SECURITY CLASSIFICATION i19. SECURITY CLASSIFICAON 20. LIMITATION OF ABSTRACT
OF REPORTI I OF ABSTRACT

UNCLASSIFIED I UNCLASSIFED UNCLASSIFIED
NSN 750-01 -280-550 03 296, (Rev. 2-89)

9 1 0 036Ptoebd by ANSI Sid. 239-128

Certificate Information

following Aa implementation was tested and determined to cass AcVz
_.11. Testina was completed on December i0, '99C.

Compiler Name and Version: Tartan Ada Sun/960MC version 4.0

Host Computer System: Sun 3/60 SunOS version 4.0.3

Target zCrn=ter System: :ntel :CE9E:.Z cn an :ntel EXVSCOg'M: zcari

See Section 3.1 for anv a-dditional information about the testing
en.Ironment.

As a result of this validation effort, Validation Certificate
9:1210I.1.122 is awarded to Tartan Inc. This certificate expires or.
1 March, 1993.

This report has been reviewed and is approved.

:ABG, Abt. ITE
Michael Tonndorf
EZnsteinstr. 20
.-8C12 Cttobrunn
Germany

Ada' yf t'on :rran :ation
:irecto ,.nmcuter i Scftware Engineering :ivisorn
institute for Defense Analvses
A exandria VA 21

Aza Joint Program Qffi:e
:r. John Solcmnd, :iretor
:ezartment cf :

Was'-ington DC

AVF Control Number: :ABG-VSR 081
9 january, 1991

-based on TEMPIATE Version 90-08-15

Ada COP:LE
VAL::A7:0N SUMM ARY REPORT.

Cer f 4calte Nxrnter: 901.2.017 .11122
Tar~an :n:.

Tartan Ada S-.; '-ACMC version 4.0

S'un 36,- =>:nte. CE960/25 on an

S- ;nS v'ers 4.-'.3 r-e. ExV8C96CMC board

Prepared By:
.B . T

DECLARATION OF CONFORMANCE

Customer: Tartan, Inc.

Certificate Awardee: Tartan, Inc.

Ada Validation Facility: IABG

ACVC Version: . 1

Ada Implementation:

Ada Compiler Name and Version: Tartan Ada Sun/960MC Version 4.0

Host Compiler System: Sun 3/60 SunOS Version 4.0.3

Target Computer System: Intel ICE960/25 on an Intel EXV80960MC Board

Declaration:

[I/we] the undersigned, declare that (I/we] have no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed above.

$2 "6 < Date: _._

Customer Signature

ALL

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES.............................1-2

1.3 ACVC TEST CLASSES.........................1-2

1.4 DEFINITION OF TERMS......................1-3

...:APER 2 :MPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS........................2-1.
2.2 :NAPPLICABLE TESTS.......................2-1

2.3 TEST MODIFICATIONS.....................2-3

CHAPTER 3 PROCESSING :NFORMATION

3.1 TESTING ENVIRONMENT........................3-1

3.2 SUMMARY OF TEST RESULTS....................3-1

3.3 TEST EXECUTION.............................3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPT:ER

:NTRCD'T:ON

:he Ada -=eentation described above was tested according o the Ada
-alid.-at- =rcedures 'Pro901 against: the Ada Standard 'AdCa93: usi-ng the
=-urrent Ada Coiler Validaticn Zapab--1it y (ACVC) .This ;a-ida:.z Sunxnary
Rencrt (7c) a-- es an account of tne test~ng of this Ada lincler-entat~on.

-cr n-i ezn--al terms used -n t-is report, the reader Is referred to

'PAz -etailed description of the AZ-VZ may be found ~nthe current
A-C Use-' C- d=e [UG89).

1. US : S VALI.DATION SUMMARY REPORT

Consistent w-,th the national laws of the originating country, the Ada

Cert-icat--on Body may make full and free public disclosure of this report.

in the United States, this is provided in accordance w4ith the "Freedom of
:nf:=~ation Act" (5 U.S.C. #552) . The results of this validation apply

only to the comoputers, operating systems, and compiler versions i-,4ntified in

t'his report.

The organizations represented on the signature page of this report do not

represent or warrant that all statements set forth in this report are

accurate and complete, or that the subject implementation has no

nonconformities to the Ada Standard other than those presented. Copies of

this reccrt are available to the public from the AVF which performed this

validation or from:

National Technical information Service
5285 Port Royal Road

Springfield VA 22161

Zuestions rezard-ing this report or t:he validation test results should be,
dir:,:t --eAVT. which perfsrroed this validation or :

.!d-a Validaticn Orran~zaticn
:nstit-ute for :efense Analvses
leOl North 3ea-ureaard, Street
Alexandria VA 223-1

INTRODUCT ION

'.2 REFERENCES

Aa3Reference Manu4a. fcr the Ada Programm~ing Lanare,
ANS:/MIL-STD-:815A, February 1983 and :So 865Z-19.97.

; r~.. da Coci-ler Validation Procedures, Version 2.':, Ada joir.t
Program office, August 1990.

SAda Comoiler Validation Cacabilitv User's Guide, 21 June 1989.

ACVC TEST CLASSES

:~nef Ada imlemenzaticns is tested by means of the A~vC. Th e AZ7.Z
zcntains a collection or test proarams structured into six test classes:
A, B, C, :), E, and L. The first letter of a test name identifi es the class
t: w---=' It belongs. C-:ass A, Z, :, and E tests are executable. Class
an= cl.ass L tests are expected to produce errors at compile time and link
time, respec t4ve ly.

Tne executacle tests are written in a self-checking manner and produce a
PA SSE:, FA:LE:,f or NOT APABEmessage indicati4ng the result when they
are exec-.ted. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
aso Orovi des a set of identityv functions used to defeat some compiler
cotimizations allowed by the Ada Standard that Would circumvent a test

ezoive. The package SPPRT!3 is used by many tests for Chapter 13 of the
Ad--a Standard. The procedure CHECK_-FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK_-FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a co.mpiler *oetects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resu,;t-ng compila tion listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also v.erified.

Class L tests :heck that an Ad a implementation correct>v dete-t *v'-.a-n

of tne Ada Standard inv:1ving multiple, seoaratelv crildunits.Er -r3
are expected at li'nk ti-me, and execution is att:empte:-.

--n- :et fthe A:*:, :cerzain macro str-nas n-a.-e tobe reclaced v
oeenatonr~''-- afor example, tne larzest integer. A.-

of the val-ues u;sed for thi-S4 impementat~cn is prcvi de4 in Apoendix A. :n
oto these ant:ipoated test modifications, additional changes may be

reaured to remove unforeseen conflicts between the tests and implementation-
4eoendent characteristics. The modifications reuie fo t-
implementation are describ.-ed in Section 2.3.

:NTR:DUCT:CN

For each Ada implementation, a customized test suite is produced by the AVF.
This customizatcn Consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see Section 2.1) and,
possibly some inapplicable tests (see Sectizn 2.2 and [UG89:).

:n -:ier tc =ass an ACVC an Ada implementation must process each tes- :f
{te customized test suite according to the Ada Standard.

1.4 DEF:N:T:ON F TE-MS

Ada Compiler The software and any needed hardware that have to be added
t: a aiven host and target computer system to a.low
7ransfo.-mation of Ada programs into executable form and
execui:on thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation ccnsisting of the test suite, the support programs, the ACVC
Capability user's r iide and the template for the validation summary
(ACVC) rercrt.

Ada An Ada compiler with its host computer system and its
:mplementat-cn target computer system.

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Crganization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
:mplementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part

of a program and also for all or part of the data necessaLy
for the execution of the program; executes user-written Zr

.ser-tesignated programs; performs user-designated data
a ation, including arithmetic operations and :ogic
rlera: ns; and that can exeeute programs that modify

during executicn. A Computer system may be a
--an-a- ne un-t or may consist cf several inter-cnnezte

Zonformity Fulfillment by a product, process or service of all
requirements specified.

1-3

:NTRODUCTION

Customer An individual or corporate entity who enters inz: an agreement
with an AVF which specifies the terms and roc.icns for AVF

services (of any kind) to be performed.

:eolaraticn of A formal statement from a customer assuring that conformity
CC.nfc..anre -s realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicale A test that contains one or more test objectives found to be
test irelevant for the given Ada implementation.

Cperatina Software that controls the execution of programs and that
System provides services such as resource allocaticn, scheduling,

input/output control, and data management. Usually, operating

systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form cf Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Complier

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration (Pro90).

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

'-4

II

CHAPTER 2

:M.IPEMENTATION DEPENDENC:ES

I

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is availabe from either the AVO or the AVF. The
publication date for this list of withdrawn tests is November 21, 1990.

E29005C B280060 C34006D C35702A B41308B C43004A
C451!4A C45346A C45612B C45651A C46022A B49008A
A740C6A 74.08A B83C22B B83022H B83025B B83025D
B83026B B85001L C83026A C83041A C97116A C98003B
BA2011A CB70OIA CB7001B CB7004A C1223A BCi226A

CC!226B BC3009B AD.B08A BDIB02B BD!B06A BD2AO2A
CD2A21E CZ2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2Bl5C BD3006A BD4008A CD4022A CD4022D CD4024B
CZ4024C CD4024D CD4031A CD4051D C5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD80C2A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A

CE311C CE3I6A CE3.118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 :NAPPL:CABLE TESTS

A test is inapplicarie ;.f -t ccntains test objectives which are irrelevant
fzr a given Ada i ipenentatizn. Reasons for a test's inapplicability may
ce supported by doc:-ents issued by ISO and the AJPO known as Ada
o:...entarzes an : : .n referenced in tne f:,rmat A:-ddddd. For this
-p-ementat-on, the f-'icwin tests were determined to -e inapplicable for

the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPL.EMENTATION DEPENDENCIES

The following :59 tests. have floating-point type declarations requiring more
digits than SYSTEM.M.AXDIGITS:

C2'4::2Z. .Y :: tests) C357C50..Y (11l tests)
(11 tests) CSS70-. .Y (11 tests)

03......j tests) C2358'll. .Z (I.' tests)
:4242..Y: tests) C4522ll-. .Y (1-1 tests)

('-- * l tests) 04552:0..Z (12 tests)
C45524C. .Z (12 tests) C4562:0. .Z (12 tests)
04564::. .Y (:1 tests) 0460120..: (1.2 tests)

C35-713B, C45423B, B86001T, and C86006H check for the predefi.ned tvpe
SHORT FLOAT.

fcr type s -:*-a-: req-.ire a SYST EM.Y.AX MAkNTIS-SA of 47 or greater; for tn-.:s
ementatizn, tnere 4s nc such tvoe.

C45536A, C 4 6 3 B, C46031B, C46033B, and C46034B contain 'S1A~iL
reoresentaticn c-auses which are not powers of two or ten.

--45624A and :45624B are not applicable as MAC HI NEOVERF LOWS is TRUE for
floating-pc4.ntz types.

B86CCY checks f--r a predefined O ixed-pcoint type other than DURATION.

ZA2009A, CA222;:. .: (2 tests), CA2009F and BC32O9C instantiate generic un--:ts
before their zcties are compiled; this implementation creates a dependence on
generic units as allowed by Al-00408 & A.1-00506 such that the compilation of
the generic .;nit bodies makes the instantiating units obsolete. (see 2.3.)

CDI09C uses a representation clause specifying a non-default size for a
floating-point type.

C02A53A checks operations of a fixed-point type for which a length clause
specifies a power-of-ten type'small; this implementation does not support
decimal smalls. (see 2.3.)

=:A84A, C:2A84TE, =2A841. . (2 tests), and CD2A840 use representation
Clauses srec:.fv; na non-default sizes for access t-ypes.

0:D2B58 checks3 tnat- 2::FRAGE ERROR is raised when the storage size specliet
for a ccilec-- :.5:: small to hold a single value of the desianated type:

tn~sinoe~e -.. allocates more space than what the length c:a-use

The follzw:.n= 2E4 st check for sequential, text, and direct access files:

::2:1102A-C . 3) Z Z Zl .. .4 (2) C7E2i02K CE21C2N. .Y (12)
C072103C. .D (2) 2:Z:4A. . (4) CE72105A. .B (2) CE21O6A. .5 (2)
::E21C7A. .H (Z) EZ:0A. . (8) CE21C9A. .C (3)

2-2

IMPLEMENTAT2ON :ZENZENCIES

ZE1IOA. .2 (4) CE2111A. .1 (9) CE2-15A-B. (2) CE21l2OA. .B (2)

CE2201A. .C (3) EE220lD. .E (2) CE2201F. .N (9) CE22C3A

-E.2204A. D (4) CE2205A 206

::40. C(3) EE2401D 02:..E(2) E24C!'o
(~5) CE2403A E22A 2(2) CE24C05E

ZZ224>A CE2407A..B (2) CE242'8A. .2 (2) C22. .

422A .2Z) CE2411A C0E 3 !0 IA. .C (3) CE112F.
F22: 2) CE3103A CE3;-:4A. .C (3) C7-3 i 0A. B.2Z

CE31OBA. .2 (2) CE3109A 0E3110;

~~12. 2 2) CE31'lD. .E (2) CE3112A. .D (4) CE-3l:4A. .E 2

CE31115 A CE3119A E=53203A EE3204A

:E:3^2C7A CE3208A CE33CIA EE33CIB

CE.3304A CE3305A CE34CIA

2-E3422B Z-340-20. 22) 023 40-Z!
2 034042..: (3) 024:A 223 4'5

CE3406A. .: (4 4E37A. .- (3) 24.

CE3409C..E '3) Et3409F CE34!0A

23 -E34!.0F CE3411A 0234!:0

E242 E3412C CE3413A. .C (3 CE3414A

.EZ..2(-I) CE3603A CE36O4A. .B (2) CE23605A.E '25)

.2) ---3704A. .F 6) CZ23' 04m. . (3) CE3'?OSA. .2 (5)

Z--37C6F. .G (2) CE3804A. .P (16) CE3803A. .2 (2)

C:OA . 2 E3806D. .E (2) 02T3806G. .H (2) CE3904A. .2 (2)

CE39C5A..Z (3) CE3905L 02E3906A. .0 (3) 0239062. .- (2)

322 2A, Z Z 1 :22 and CE3107A require NA-ME ERROR to be raised wher, an attempt
~s made tc create a file w-,tn an il'egal name; this implemen-azlon does not
sup;port external files and so =a;.ses tSERR.(see 21.3.)

2Z3TEST MOD:FICATIONS

Modifications (see Section 1.3) were required for 114 tests.

The following tests were split into two or more tests because this
.emenzation did not report the violations of the Ada Standard in the way

expected4 !cy the original tests.

S22^3A B24007A B824029A B2500,28 B3z20A 330

-Z322A B^35701A R3E:!A 83620A .::A 23-I2A

B3721A B372C2A, B1P23A B37302A B39^223A 2.38^0.3B
a3a::Ea B32 38009B 313

23;10D =38iI32 8- 43202C 402

- B 490n06A, 2 -E B49007A =549307S B49009A

m24A'2, R54A20A B54A2,Z A 3580OZA B522 590CIIX

B5:i B5900.1 S6222672 B67001A BE22 6702 IO

B6'7C2 B74103E B274:14A B7 430O7B 8 1E 21A 283E012

B82' 285008G B91004A B9i.CV5A B95303A

3952:73 B95031A 2972 BC1002A BC209A B22.09C

IMPLEMENTATION DEPENDENCIES

BC1206A BC200iE BC3005B BD2AO6A BD2B03A BD2DO3A
BD4003A BD4006A BD8003A

~e l3 2 was graded ;.nap licable by Evaluation and Test Modification as
zarerted by the AVC. This test checks that prazmras may have unresclvacle
arrumnents, and it includes a check tnat pragma LlST has the required effect.

for this implementaticn, pragma L:ST has no effect if the compilatcon
results in errors or warnings, which is the case when the test is processed
without modification. This test was also processed with the pragmas at lines
4;, 5S, 70 and 71 commented out so that pragma LlST had effect.

Tests 045524A..; (14 tests) were graded passed by Test Modification as
directed by the AV:. These tests expect that a repeated division wil result
In zero: but the standar -n-y requires that the result lie in the smallest
safe interval. Thus, the te,:s were modified to check that the result was
•"thin the smallest safe interval by adding the following code after line
141; the modified tests were passed:

ESIF VAL <= 'SAFE M.LI THEN COMMENT ("UNDERFLCW SEEMS GRADUAL")

:£2:35C and CSEZC7A were graded passed by Test Modification as directed by
the AVC. These tests were modified by inserting "PRAGMA ELABORATE (REPORT);"
:efcre the package declaratin5 at lines 23 and 2:, respectively. Without the
pragma, the packages may be elaborated prior to package report's body, and
thus the packages' calls to function Report.:dentI:nt at lines 14 and 13,
rezpectively, will raise PROGRAMERROR.

B63ECIB was graded passed by Evaluation Modification as directed by the AVO.
This test checks that a generic subprogram's formal parameter names (i.e.
both generic and subprogram formal parameter names) must be distinct; the
duplicated names within the generic declarations are marked as errors,
whereas their recurrences in the subprogram bodies are marked as "optional"
errors--except for the case at line 122, which is marked as an error. This
implemen:ation does not additionally flag the errors in the bodies and thus
tne expected error at line 122 is not flagged. The AVO ruled that the
implementation's behavicr was acceptable and that the test need not be split
sunc a split woud sim ly duplicate the case in 3ElA at line 15).

A CA:;:..= -resist, CA2009F and BC3CC97 were graded inapplicable
-a ...a..... :ofioat:s as directed by the AC. Tnese tests instantiate

7eneri: units t-fzr.e c :se units' bodies are co=ilej; this implementatizn
creates dependences as allowed by AI-00408 & A:-00506 such that tne
Compinlaticn of the generic unit bodies makes the instantiating units
ozsclete, and the oz-eot~ves of these tests cannot be met.

Z-4

IMPLEMENTATION DEP:NDENCIES

BC3204C and BC3205D were graded passed by Processing Modification as directed

by the AVO. These tests check that instantiations of generic units with
unconstrained types as generic actual parameters are illegal if the ;eneric
bodies contain uses of the types that require a constraint. However, tne
generic bodies are compiled after the units that contain the instant-ati-ns,

and this icplementation creates a dependence of the instantiat nc units on
the generic units as allowed by AI-00408 & A:-00506 such that the compu.ation
of the genezi todies makes the instantiating units obsolete--no errors are
detected. The processing of these tests was modified by compiling the

seperate files in the following order (to allow re-compilation of obsolete
units), and all intended errors were then detected by the compiler:

BC1204c: CC . , Z, C3M, C4, CS, C6, C3M

BC32^5D: : 2 :I

BC3204D and BC22t5C were graded passed by Test Modification as directed by

the AVO. These tests are similar to BC3204C and BC3205D above, except that
all compiLatirn unlts are contained in a single compilation. For these two

tests, a cop " zf the main procedure (which later units make obsolete) was

appended to the tests; all expected errors were then detected.

CD2A53A was gra4e= inapplicable byEvaluation Modification as directed by the

AVO. The test contains a specification of a power-cf-ten value as small for

a fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal

smalls may be omitted.

AD9001B and ADg004A were graded passed by Processing Modification as directed
by the AVO. These tests check that various subprograms may be interfaced to

external routines (and hence have no Ada bodies) . This implementation
requires that a file specification exists for the foreign subprogram bodies.

The following command was issued. to the Librarian to inform it that the

foreign bodies will be supplied at link time (as the bodies are not actually
needed-by the program, this command alone is sufficient:

adalib96C> interface -sys -L-library A9004A

CE21C3A, :2 3B ant CE3107A were graded inapplicable by Evalua:ion
Modification as -:rected by the AVO. The tests abort with an unhandled

eX:eti:n wn Ln E P.-IR is raised on the at:emzt to create an external file.

This is atzect~oe eha.icr because dhis imcementation does not suppzrt

external fiLes of.

2-5

zHAPTER 3

PROCESS:NG :NT*W7YATION

2.1 TEST:NG ENVIRONMENT

The Ada impcementation tested in this validation effort is described
ateruatelv -v the information uiven in the initial pages of this report.

"7 r a cocnt cf contact for technical information about this Ada
impremenatizn system, see:

Mr Ron Duursma
Director cf Ada Products
Tartan :nc.
.,, Oxford Drive,

Monroeville, PA 15146,

USA.
Tel. (412) 856-3600

For a pcnt of c;ntact for sales information about this Ada implementation
system, see:

Mr Bill Geese

Director of Sales
Tartan inc.

300, Oxford Drive,
Monroeville, PA 15146,
USA.

Tel. (412) 856-3600

Testn :f. Aa implementati was conducted at the customer's site by
a ":ailation tear fsm the AVF.

An Ada :mplementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, tne Ada :mplementation fails the ACVC [Prc9CI.

PROCESSING INFORMAT:CN

For all processed tests (inapplicable and applicable), a result was
obtained that conformb to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 362
b) Total Number of Withdrawn Tests 83
c) =rocessed :nappicable Tests 6

d) Non-Processed :!C Tests 264
e) Non-Processed Floating-Point

Precision Tests 159

f) Total Number of Inapplicable Tests 459 (c+d~e)

g) Total N"'-mer of Tests for ACVC 1.11 41. (a-b-f)

7ne above number of :'C tests were not processed because this implementation
does not suDoort a file svstem. The above number of floating-point tests were
-:t processed because they used floating-point precision exceeding that

supported yv the imoementation. When this compiler was tested, the tests
isted in Section 1 had been withdrawn because of test errors.

.3 TEST EXECUTIN'

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in Section 2.1 had been withdrawn because of test
errors. The AVF determined that 459 tests were inapplicable to this
implementation.. All inapplicable tests were processed during validation
testing except for 159 executable tests that use floating-point precision

exceeding that supported by the implementation and 264 executable tests that
use file operations not supported by the implementation. In addition, the
modified tests mentioned in Section 2.3 were also processed.

A 1/4" Data Cartridge containing the customized test suite (see Section 1.3)
was taken on-site by the validation team for processing. The contents of the

tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were ==4oiled and linked on the hcst computer system, as
acprpriate. The executable images were transferred to the target computer
syIstem by tne ::-_. .aticns iank, an RS232 interface, and run. The results
were zactureJ on tne host ::mputer system.

Testing was performed using command scripts provided by the customer ano
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. :t also indicates the

default options. The options invoked explicitly for validation testing
durin ~this test were:

3-2

PROCESS:NG I-NFOPMAT:ON

options used fcr compiling:

-f forces t-be compiler to accept an attempt to compile a ;nit i moortedj
from another library, which is normally prohibited.

-q quiet, stops output of all ccmpiler phase names. Not 4-ccumentedi
tversion as it is the default setting. Option -v was tne

aefau1t setting for the validaticn run.

-C normally the compiler creates a registered copy of the user's source
code i4n the library directory for proper operation of the remake and
make s-,bcommands to Adalib.

-La fortes a compiler to produce a listing even if no errors were fo-und.

No exp i'nker Otions were used.

Test output, zcmpiler and linker 1 stincs, and -o lg were carture-4 on a
1/4" Data Cartridge and archived at the AVF.. The listings examined cn-site
by the valid,-ation team were also arcnivec.

APPENDIX A

MACRO PARAMETERS

-s appendix contains the macro parameters used for custz=.zin= the ACVC.
The meaning and purpose of these parameters are explained in [UG89J. The
parameter values are presented in two tables. The first tarle lists the
values that are defined in terms of the maximum input-line length, which is
,:he value fcr SMAXINLEN--alsc listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
engt'h.

Macro Parameter Macro Value

SBIG :DI (1-V-1 I> 'A', V => '1')

$BIG 1D2 V...V-i -> 'A', V => '2')

$B:G ID3 (2..V/2 -> 'A') & '3' &
(l..V-I-V/2 -> 'A')

SBIGID4 (1..V/2 -> 'A') '4' &
(1..V-1-V/2 -> 'A')

SBIGINT LIT (1..V-3 -> '0') & "298"

SBIG REAL LIT (l..V-5 -> '0') & "690.0"

SB:GSTRING1 '"' & (1..V/2 -> 'A') & '"'

$BIGSTRING2 '"' & (1..V--V/2 ' ''

SBLANKS (1..V-20)> '

L'- -N !NT BASE2 L:TEAL

SMAX LENREALBASE: LITERAL
"16:" & (l..V-7 -> '0') & "F.E:"

SMAXSTR:NG L:TERAL '"' & (1..V-2 "> 'A') &

A-I

MACRO PARAMETER.S

The following table li4sts all of the other macro paramete~rs and their
respective values.

Macro Paramneter Mac= Vli

SY.AX_:N -LErN 240

SACC-S:zE 32

SAL IGNMENT 4

SCOUNT-LAST 2147483646

SDEFA*UL! MEM S:ZE 2097152

SDEF~LT YS N.ME 1960MC

SrDELT'A :C 201.0#E-3!

SENRY z:~EsSSYSTEM.A:RESSI' (6*0000_00C8#)

SENT:RY .ZDRESSi SYSTEM.AZD:rESS' ('6#0000_00C9#)

SENT.Y RSS2SYST EM.AZ:-RE-SS' (:6*0000_OOCA*)

SF:EL: LAST 20

SF:LE TIERMINATOR I

SF:7XE: .NAME NO SUCH TYPE

SFLOAT NAME EXTENDEDFLOAT

SFORM STR:NG

SFORMSTR-NG2 "CANNOTREST.RICT FLECAPACITY"

SOREATERTHAN_ URATION

lO00000.11

100_000_000C

$GR7EATER THAN :FLOAT SAFE LARGE
1 .OE+38

A-2

4 _ _ _MACRC PARATERS

SGREATER THANSHORTFLOA'TSAFE LARGE

$Z.LEGAL EXTERNALFILE NAME-.

:LLEGAL ExTERNALFILENAME2

S :NAPROPRIATE LINELENGTH

s:N:U:EPRAM~l "?FAGMA :NCLUDIE ("A28006rl~.TST7")"

'14748-1648

$:N'7TERFACE LANG'UAGE Uise Call

SLESSTHAN DURATION -100 000.0

SLESS THAN DURATION BASE FIRST

SL:NE -TER.M0INATOR

SLOW PRlIORITY 2

S.AC.HINE CODESTATEMENT

TwoF o rrsat (XCV., (Reg_ it S)Rea, R5l

sy:AJ :Nz olET TypE mne!nonic

S~',AX :- PLS . 9223372036854775808

~M:~::~:T-92137"036954175808

MACRO PARAMETERS

$NAME BYTEINTEGER

$NAME LIST SEOvMC

$NA.ME SPECIF:CA:N! 't~suna2/acvc!.l vl~a- x2!.2a

$NAMESPECiF::A::CN2 /:suna2/acvcl ll/valiiatiz- ~-.C

SNAMESPECIF:CATICN3 /tJisuna2/acvcl1_12'va!4idati -r./x3::l9a

SNEGBASEDINT 16*FFFFFFFFFFFFFFFE#

SNEW MEM SIZE 2297152

SNEW STOR UN::

$NrEW SYS NAME :6M

SPAGE TERMI1NATOR

s~c~n EF::::~; reczrd Oeration: Mneonc
Crerand 1: Operand; Coperand 2: 3perand;
end record;

SRECCR."ZNAME 7woFormat

STASK SIZE 2

STASKSTORAGES:ZE- 4096

STICK 2C.C15625

SVARIABLEADDRESS SYSTEM.ADDRESS' (16#0020_1222*#)

$VARIABLEAD)DRESS! SYSTEM.A:DRESS' ('6*00C2-O_:04&)

$VARIABLEADDRESS2 SYSTEM.ADRESS'(R6#0000 .008#)

$YCURPR.AGMA NC SUCH PRAGMAk

A-4

APPENDIX B

zoMp:LATION SYSTEM OPTI!:S

The : ier pt s f h Aia iplementa2n, as Jescribed n
- -e -d , are provided 'y - he zustomer. Unjess scecifica-'Y noted otherwise,

references in tis appendix are to compiler documentation and not to this

report.

B-:

Compilation switches for Tartan Ada Sun 960.

-a Generate an assembly code file. The assembly
code file has an extension .s for a body or
s for a specification (see Section

FILES-LEFT).

-A Generate an assembly code file with
interleaved source code. The assembly code
file has an eztension .a for a body or as
for a specification.

-c Normally, the compiler creates a registered
copy of the user's source code in the library
directory for proper operation of the remake
and make subcommands to AL960.

This option suppresses the creation of this
copy.

-Cl Controls the type of calls generated by the
compiler through the option supplied. With
this option, the compiler generates all long
calls in the compiled code. With the default,
the compiler generates short calls within ap-
plication code and long calls from applications
to runtims routines.

-Cs Controls the type of calls generated by the
compiler through the option supplied. With
this option, the compiler generates all short
calls in the compiled code. Inappropriate use
of this switch will cause a failure at link
time. With the default, the compiler generates
short calls within application code and long
calls from applications to runtime routines.

-d When compiling a library unit, determine
whether the unit is a refinement of its
previous version and, if so, do not make
dependent units obsolete. This check is not
done by default.

-e=<integer> Stop compilation and produce a listing after
n errors are encountered, where n is in the
range 0..255. The default value for n is
255. The -e qualifier cannot be negated.

-f Forces the compiler to accept an attempt to

compile a unit imported from another library,
which is nozally prohibited.

-g Compile with debugging information for
AdaScope.

-i Cause comiler to omit data segments with the

* 2

text of enumeration literals. This text is
nozzally produced for exported enumeration
types in order to support the text attributes
('IMAGE, 'VALUE and 'WIDTH). You should use
-i only when you can guarantee that no unit
that will import the enumeration type will
use any of its text attributes. However, if
you are compiling a unit with an enumeration
type that is not visible to other compilation
units, this option is not needed. The
compiler can recognize when the text
attributes are not used and will not generate
the supporting strings.

-L=[project:]library Select library and/or project for this
compilation. This option takes effect after
all commands from the .adalibrc file have
been executed, thereby possibly overriding
its effects.

-La Generate a listing, even if no errors were
found. The default is to generate a listing
only if an error is found.

-Ln Never generate a listing. The default is to
generate a listing only if an error is found.

-Me When package MACHINECODE is used, controls
whether the compiler attempts to alter operand
address modes when those address modes are used
incorrectly. With this option, The compiler
does not attempt to fix any machine code insertion
that has incorrect address modes. An error
message is issued for any machine code insertion
that is incorr*ct. With the default, the compiler
attempts to generate extra instructions to fix
incorrect address modes in the array aggregates
operand field.

-Mw

The compiler attempts to generate extra
instructions to fix incorrect address modes. A
warning message is issued if such a "'fixup''
is required. With the default, the compiler
attempts to generate extra instructions to fix
incorrect address modes in the array aggregates
operand field.

-Opmn Control the level of optimization perford
by the compiler, requested by n. The
optimization levels available are:

n - 0 Minimum - Perfozms context
determination, constant fold-
ing, algebraic manipulation,
and short circuit analysis.

, tm.

3

n i Low - Perform level 0 op-
timizations plus common sub-
expression elimination and
equivalence propagation within
basic blocks. Zt also op-
timizes evaluation order.

n - 2 Best tradeoft for space/time -
the default level. Performs
level 1 optimizations plus flow
analysis which is used for
common subexpression elimina-
tion and equivalence propaga-
tion across basic blocks. It
also performs invariant expres-
sion hoisting, dead code
elimination, and assignmnt
killing. Level 2 also performs
lifetime analysis which is used
to improve register allocation.
It also perform inline expan-
sion of subprogram calls in-
dicated by Pragma INLINE, if
possible.

n i3 Tine - Performs level 2
optimizations plus inline ex-
pansion of subprogram calls
which the optimizer decides are
profitable to expand (from an
execution time perspective).
Other optimizations which im-
prove execution time at a cost
to image size are perfom md
only at this level.

n - 4 Space - Performs those
optimizations which usually
produce the smallest code,
often at the expense of
speed. This optimization
level may not always produce
the smallest code, however,
another level may produce
smaller code under certain
conditions.

-RS Causes the compiler to accept non-Ad& input,
necessary to reple-e package SYSTEK. This
qualifier should not be used for compiling
user-defined packages containing illegal
code. Changes of package SYSTEM must fully
conform to the requirmnts stated in ARM 4-5
13.7 and 13.7.1, and must not change the
given definition of type ADDRESS, in order to
preserve validatability of the Ada system.

44

-r For internal use only, this option is used by
AL960 when it invokes the compiler in
(re)make mode.

-SAcDEZ:LORSZ] Suppress the given set of checks:

A ACCESS CHECK
C CONSTRINT CHMC
D DZSCRXMMOMTUCK
E ELABORATION CHEC
I INDMC CHECK
L LENGT]H CHEC
0 OVERFLOW CHEC
R RANGEHCK

S STORAGZ_CHECK
Z ZERO"DIVISION CECK

The -S option has the same effect as an
equivalent pragma SUPPRESS applied to the
aource file. If the source program also
contains a pragma SUPPRESS, then a given
check is suppressed if either the pragma or
the switch specifies it; that is, the effect
of a pragma SUPPRESS cannot be negated with
the command line option. See LRM 11.7 for
further details. Supplying the -S option
significantly decreases the size and execu-
tion time of the compiled code. Examples
axe:

-SOZ Suppress OVERFLOW CHECK And
"ZERO"DMSION_CHECK.

-S Suppress all checks.

-SC Suppress CONSTRAINTERROR, equiv-
alent to -SADILR. (Note that -SC
is upward compatible with version
2.0)

-s Parses a unit and reports syntax errors, then
stops compilation without entering a unit in
the library.

-v Print out compiler phase names. The compiler
prints out a short description of each

compilation phase in progress.
b

-w Suppress warning messages.

-x Include cross reference information for the
source in the object file.

In addition, the output from the compiler may be redirected using the
redirection facility including 'W' for stderr; for example

% tada960mc tax spec.ada >& taxspec.t t

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are przvided by the customer. Unless specifically noted otherwise,
references in this appendix are to linker documentation and not to th:s
report.

B-2

L im _..

Linker switches for Sun hosted Tartan Ada compilers.

Cobagam QUALIFIERS
This section describes the command options available to a user who directly
invokes the linker. The option names can be abbreviated to unique prefixes:
the first letter is sufficent for all current option names. The option names
are not case sensitive

-CONTROL file The specified file contains linker control commands.
Only one such file may be specified, but it can
include other files using the CONTROL command. Every
invocation of the linker mist specify a pontrol file.

-OUTPUT file The specified file is the name of the first output
object file. The module name for this file will be
null. Only one output file may be specified in this
manner. Additional output files may be specified in
the linker control file.

-ALLOCATIONS Produce a link map showing the section allocations.

-UNUSEDSECTIONS Produce a link map showing the unused sections.

-SYMBOLS Produce a link map showing global and external
symbols.

-RESOLVEMODULES This causes the linker to not perform unused section
elimination. Specifying this option will generally
make your program larger, since unreferenced data
within object files will not be eliminated. Refer to
Sections RESOLVECHD and USE PROCESSING for infor-
mation on the way that unused section elimination
works.

-MAP Produce a link map containing all information except
the unused section listings.

Note that several listing options are permitted. This is because link maps
for real systems can become rather large, and writing them consumes a
significant fraction of the total link time. Options specifying the contents
of the link map can be combined, in which case the resulting map will contain
all the information specified by any of the switches. The name of the file
containing the link map is specified by the LIST command in the linker control
file. If your control file does not specify a name and you request a listing,
the listing will be written to the standard output stream.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The on>" a.:owed implementation dependencies correspond to -mplementation-
dependent praciras, to certain machine-dependent conventions as mentioned in
Chapter o3 of the Ada Standard, and to certain allowed restrictions on
represenza-e:n clauses. The implementation-dependent characteristics of this
Ada implementation, as described in this Appendix, are provided by the
zustcmer. Unless specifically noted otherwise, references in this Appendix
are to compiler documentation and not to this report. Implementation-
specific portions of the package STANDARD, which are not a part of this
Appendix F, are:

paokaae sT -A'ARZ is

type BYTEINTEGER is range -128 .. 127;

type SHORT INTEGER is range -32768 .. 32767;
type I ?TEGER is range -2147483648 .. 2147483647;
type LCNGINTEGER is range -9223372036854775808 .. 9223372036854775807;

type FLOAT is digits 6 range
- ,i iilllllilllllll e 2 .. 2#1.IIII1iiilliiiiii!#el26;

type LCONG_FLOAT is digits 15 range

type EXTENDEZ FLAT is digits 1S range

----- i-t -. O.C rane -640.0 2. -40-

t}'p ZUAT[N.s del'ta 3. ."range -86400.0 .. e6400.:;

ent STA:AKZ;

Chapter 5

Appendix F to MIL-STD-1815A

This chapter contains the required Appendix F to the LRM which is Military Standard. Ada Programming
Language, ANSI/MIL-STD-1815A kAmencan National Standards Institute, Inc.. February 17, 1983).

5.1. PRAGMAS

5.1.1. Predefined Pragmas
This section summarizes the effects of and restrictions on predefined pragmas.

" Access collections are not subject to automatic storage reclamation so pragma CONTROLLED has no effect.
Space deallocated by means of UNCHECKEDDEALLOCATION will be reused by the allocation of new
objects.

" Pragma ELABORATE is supported.

" Pragma INLINE is supported.

" Pragma INTERFACE is supported. A particular Ada calling sequence is associated with a subprogram
whose implementaton is provided in the form of an object code module. LanguageName may be
either UseCall or Use Sal as described in Section 5.1.2.2. Any other Language-Name will be
accepted. but ignored. and the default. Use Call will be used.

" Pragma LIST is supported but has the intended effect only if the command qualifier LIST-ALWAYS was
supplied for compilation, and the lisung generated was not due to the presence of errors and/or warnings.

" Pragma MEMORYSIZE is accepted but no value other than that specified in Package SYSTEM (Section
53) is allowed.

" Pragma OPT.MIZE is supported, but on a subprogram basis only. It does not affect code at the block
level

" Plagma PACK is supported.

" Pragma PAGE is supported but has the intended effect only if the command qualifier LIST-ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errors and/or warnings.

* Pragma PRIOR:TY is supported.

" Pragma STORAGEUN:T is accepted but no value other than that specified in Package SYSTEM (Section
5.3) is allowed.

" Pragma SHARED is not supported. No warning is issued if it is supplied.

" Pragna SUPPRESS is supported.

" Pragma SYSTEMNAME is accepted but no value other than that specified in Packag SYSTEM (Section
5.3) is allowed.

USER MANUAL FOR TARTAN ADA SUN 960

5.1.2. Implementation-Defined Pragmas
Implementation-defined pragmas provided by Tartan are described in the following sections.

5.1.2.1. Pragma LINKAGENAME

The pragma LINKAGENAME associates an Ada entity with a string that is meaningful externally; e.g., to a
linkage editor. It takes the foarm

pragma LINKAGENAME (Ada-simple-name. string-constant)

The Ada-simple-name must be the name of an Ada entity declared in a package specifcation. This entity must be
one that has a runtime representation; e.g., a subprogram, exception or object. It may not be a named number or
stuing constanL The pragma must appear after the declaration of the entity in the same package specification.

The effect of the pragma is to cause the string-constant to be used in the generated assembly code as an
external name for the associated Ada entity. It is the responsibility of the user to guarantee that this string
constant is meaningful to the linkage editor and that no illegal linkname clashes arise.

This pragma has no effect when applied to a library subprogram or to a renames declaraion; in the latter case,
no warning message is given.

When determining the maximum allowable length for the external linkage name, keep in mind that the
compiler will generate names for elaboration flags simply by appending the suffix #GOTO. Therefore, the
external linkage name has 5 fewer significant characters than the lower limit of other tools that need to process
the name (e.g., 40 in the case of the Tartan Linker).

5.122. Pragma FOREIGNBODY

In addition to Pragma INTERFACE, Tartan Ada supplies Pragma FOREIGNBODY as a way to access
subprograms in other languages.

Unlike Pragma INTERFACE, Pragmai FOREIGNBODY allows access to objects and exceptions (in addition
to subprograms) to and from other languages.

Some restictions on Pragma FOREIGN_BODY that are not applicable to Pragma INTERFACE are:

" Pragma FOREIGNBODY must appear in a non-generic library package.
* All objects, exceptions and subprograms in such a package must be supplied by a foreign object module.
* Types may not be declared in such a package.

Use of the pragma FOREIGNBODY dictates that all subprograms, exceptions and objects in the package are
provided by means of a foreign object module. In order to successfully link a program including a foreign body,
the object module for that body must be provided to the library using the AL960 foreign command described
in sections 3.3.3 and 13.5.5. The pragma is of the form:

pragma FOREIGNBODY (Language_name [, elaboration routinename])
The parameter Lnguage_name is a string intended to allow the compiler to identify the calling convention used
by the foreign module (but this functionality is not yet in operation). Currently, the programmer must ensure that
the calling convention and data representation of the foreign body procedures are compatible with those used by
the Tartan Ada compiler. Subprograms called by tasks should be reenUranL

The optional elaboration routine name sting argument is a linkage name identifying a routine to initialize
the packag. The routine specified as the elaboration routine name, which will be called for the elaboration of
this package body, must be a global routine in the object module provided by the user.

A specification that uses this pragma may contain only subprogram declarations, object decarations that use
an unconstrained type mark, and number declaraions. Pragmas may also appea in the package. The type mark
for an object cannot be a task type, and the object declaration must not have an initial value expression. The
pragma must be given prior to any declarations within the package specification. If the pragma is not located
before the fist declaration, or any restriction on the declarans is violated, the pragm is ignored and a warning
is generated.

APPEND FTO I.N-,TrD-IISSA

The foreign body is entirely rsponsible for initializing objects declared in a package utilizing pragma
FOREIGN BODY. In particulw, the user should be aware that the implicit initializations described in LRM 3.2.1
ar not done by the compiler. (These implicit itutializations are associated with objects of access types, certain
record types and composit types containing components of the preceding kinds of types.)

Pragma LINKAGENAME should be used for all declarations in the package, including any declarations in a

nested package specification to be sure that there are no conflictmg link names.

In the following example, we want to call a function plan which computes polynomials and is written in C.
package MATHFUNCTIONS is

pragma FOREIGN BODY ("C");
function POLYNOMIAL (X: INTEGER) return INTEGER;

--Ada spec matching the C routine
pragma LINKAGE NAME (POLYNOMIAL, "plmn");

--Force compiler to use name "plmn" when referring to this
-- function

end MATHFUNCTIONS;

with MATH FUNCTIONS; use MATHFUNCTIONS;
procedure MAIN is
X:INTEGER :- POLYNOMIAL(10);

-- Will generate a call to "plmn"
begin ...

end MAIN;

To compile, link and run the above program, you do he following steps:

1. Compile MATHFUNCTIONS

2. Compile MAIN
3. Obtain an object module (e.g. math. TOF) containing the compiled code for plmn.
4. Issue the command

AL960 foreign math-functions math.TOF

5. Issue the command
AL960 link main

Without Step 4. an atempt to link will produce an error message informing you of a missing package body for
MATH-FUNCTIONS.

Using an Ada body from another Ada program library. The user may compile a body written in Ada for a
specification into the library, regardless of the language specified in the pragma contained in the specification.
This capability is useful for rapid protoyping, where an Ada package may serve to provide a simulated response
for the functionality that a foreign body may evenually produce. It also allows the user to replace a foreign body
with an Ada body without recompiling the specification.

The user can either compile an Ada body into the library, or use the command AL960 foreign (see
Sections 3.3.3 and 13.5.5) to use an Ada body from another library. The Ada body from another library must
have been compiled under an identical specification. The pragma LINKAGENAME must have been applied to
all eantties declared in the specification. The only way to specify the linlmame for the elaboration routine of an
Ada body is with the pragma FOREIGN BODY.

5.1.2J. Pge INTERFACE

The pragma INTERFACE associates a paticular Tartan Ada calling sequence with a subprogram whose
implementation is provided in the form of an object code module.

The form of the pragma is:

pragma INTERFACE (LaguageName, S bproraeName)

USER MANUAL FOR TARTAN ADA SUN 960

Language_Name may be either Use Call or Use Bal as described in Section 5.1.2.2. Any other
Language_Name will be accepted, but ignoed, and the default, Use_Call will be used.

While the BAL calling convention is faster than the standard calling convention, be aware that BAL must be
used carefully. In particular, when a routine is called with BAL:

* No new stack frame is allocated. This means that the called routine must not change the stack pointer, or

must at least ensure that the stack pointer is restored before the routine returns.

* No new local registers are allocated.

e The called routine must return via a bx (reg) instruction. The BAL instruction will automatically store
the returm address in register gl 4.

* If a called routine has more than 12 words worth of parameters, the compiler will store the argument block
pointer in g14. Since the BAL insruction will place the return address in g14, the called routine could
find that its argument block pointer has been trashed.

Please see Chapter 6 for a complete list of BAL calling convention restrictions.

5.2. IMPLEMENTATION-DEPENDENT ATTRIBUTES

No implementation-dependent attributes are currently supported.

5.3. SPECIFICATION OF THE PACKAGE SYSTEM

The parameter values specified for the 80960MC in package SYSTEM [LRM 13.7.1 and Appendix C] are:
package SYSTEM istype ADDRESS is newlnteger;

type NAME is (1960MC)

SYSTEM NAME constant name :- 1960MC;
STORAGE UNIT constant :- 8;
MEMORYSIZE constant :- 2_097_152;

MAXINT constant :- 9 223 372 036 854 775 807;
MIN_INT : ostant : -MAX NT- 1;

MAXDIGITS : constant :- 18;

MAX MANTISSA : constant :- 31;
FINE DELTA : constant :-2#1.0#e-31;
TICK- : constant :- 0.015625;
subtype PRIORITY is INTEGER range 2 .. 17;
DEFAULT PRIORITY Constant PRIORITY :- PRIORITY'FIRST;
RUNTIMEERROR exception;

end SYSTEM;

5.4. RESTRICTIONS ON REPRESENTATION CLAUSES
The following setions explain the basic restrictions for representation specifications followed by additional

restrictions applying to specific kinds of clauses.

5.4.1. Bask Rest ridon

The basic reoiction on repmentation specifications [LRM 13.1] is that they may be given only for types
declared in ens of a type definition, excluding a generic typedefinition (LRM 12.1) and a
private typedefinition (LRM 7A). Any representation clause in violation of these rules is not obeyed
by the conpiler a e messa is issued.

C

APPDIX F TO MIL-STD-IS15A

Further restrictions are explained in the following sections. Any representation clauses violating those restric-
tions cause compilation to stop and a diagnostic message to be issued.

5.4.2. Length Clauses
Length clauses CLRM 13.2] are, in general, supported. For details, refer to the following sections.

5.4.2.1. Size Specificaeons for Types

The rules and restrictions for size specifications applied to types of various classes are described below.
The following principle rules apply:

1. The size is specified in bits and must be given by a static expression.

2. The specified size is taken as a mandate to store objects of the type in the given size wherever feasible.
No attempt is made to store values of the type in a smaller size, even if possible. The following rules
apply with regard to feasibility:

* An object that is not a component of a composite object is allocated with a size and alignment that
is referable on the target machine; that is, no attempt is made to create objects of non-referable size
on the stack. If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object; for example

type MyEnum is (A,B);
for Myenum' size use 1;
V,W: Myenum; -- will occupy two storage

-- units on the stack
-- (if allocated at all)

type rec is record
V,W: Myenum;

end record;
pragma Pack(rec);
0: rec; -- will occupy one storage unit

* A formal parameter of the type is sized according to calling conventions rather than size
specifrations of the type. Appropriate size conversions upon parameta passing take place
automatically and are ransparent to the user.

* Adjacent bits to an object that is a component of a composite object, but whose size is
non-referable, may be affected by assignments to the object, unless these bits are occupied by other
components of the composite object; that is, whenever possible, a component of non-referable size
is made referable.

In all cases, the compiler generates correct code for all operations on objects of the type, even if they are
stored with differing representational sizes in different context.

Note: A size specification cannot be used to force a certain size in value operations of the type; for
example

type my_int is range 0..65535;
for my int'size use 16: -- o.k.
A,B: my_int;

A + B... -- this operation will generally be
-- executed on 32-bit values

3. A size specification for a type specifies the size for objects of this type and of all its subtypes. For
components of composite types, whose subtype would allow a shorter representation of the component,
no atemp is made to inke advantage of such shorter reprewseaions. In contrast, for types without a
Ieoth dlams, such components may be repesented in a lsser number of bits than the ntumber of bits
requind to repaet all values of the type. This, in the example

USER MANUAL FOR TARTAN ADA SUN 960

type MY INT is range 0..2**15-1;
for MYINT'SIZE use 16; -- (1)
subtype SMALL_MY_INT is MYINT range 0..255;
type R is record

X: SMALLMYINT:

end record;

the component R.X will occupy 16 bits. In the absence of the length clause at (1), RX may be
represented in 8 bits.

Size specifications for access types must coincide with the default size chosen by the compiler for the type.

Size specifications are not supported for floating-point types or task types.

5.4.2.2. Size Speciftcatdo for Scalar Types

The specified size must accommodate all possible values of the type including the value 0 (even if 0 is not in
the range of the values of the type). For numnsic types with negative values the number of bits must account for
the sign bit. No skewing of the representation is attempted. Thus

type my-int is range 100..101;

requires at least 7 bits, although it has only two values, while
type my int is range -101..-100;

requires 8 bits to account for the sign bit.

A size specification for a real type does not affect the accuracy of operations on the type. Such influence
should be exerted via the accuracydefinition of the type (LRM 3.5.7. 3.5.9).

A size specification for a scalar type may not specify a size larger than the largest operation size supported by
the target architecture for the respective class of values of the type.

5.4.23. Size Specfkadoa for Array Types

A size specification for an array type must be large enough to accommodate all components of the array under
the densest packing strategy. Any alignment constraints on the component type (see Section 5.4.7) must be met.

The size of the component type cannot be influenced by a length clause for an array. Within the limits of
representing all possible values of the component subtype (but not necessarily of its type), the representation of
components may, however, be reduced to the minimum number of bits, unless the component type carries a size
specification.

If there is a size specification for the component type, but not for the army type, the component size is
rounded up to a referable size, unless pragma PACK is given. This applies even to boolean types or other types
that require only a single bit for the representation of all values.

5.42.4. Size SpecITlcadlo for Record Types

A size specification for a record type does not influence the default type mapping of a record type. The size
must be at least as large as the number of bits determined by type mapping. Influence over packing of com-
ponents can be exerted by means of (partial) record representation clauses or by Pragma PACK.

Neither the size of component types, nor the representation of component subtypes can be influenced by a
length clause for a record.

The only implementation-dependent components allocated by Tatm Ada in records contain dope information
for arrays whole bounds deped on discriniumts of the record or contain relative offsets of components within a
record layout for record components of dynamic size. Thes implementation-dependent components cannot be
named or sized by the usr.

APPENDD F TO MIL-T-1815A

A size specification cannot be applied to a record type with components of dynamically determined size.

Note: Size specifications for records can be used only to widen the representation accomplished by padding at
the beginning or end of the record. Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragma PACK.

5.4.2.5. Specifkaiion of Collection Sizes

The specification of a collection size causes the collection to be allocated with the specified size. It is
expressed in storage units and need not be static; refer to package SYSTEM for the meaning of storage units.

Any attempt to allocate more objects than the collection can hold causes a STORAGE-ERROR exception to be
raised. Dynamically sized records or arrays may carry hidden administrative storage requirements that must be
accounted for as part of the collection size. Moreover, alignment constraints on the type of the allocated objects
may make it impossible to use all memory locations of the allocated collection. No matter what the requested
object size, the allocator must allocate a minimum of 2 words per objeCt. This lower limit is necessary for
administrative overhead in the allocator. For example, a request of 5 words results in an allocation of 5 words; a
request of I word results in an allocation of 2 words.

Furthermore, the allocator must round non-word sized requests up to the nearest word. For example, a
request of 11 bytes is rounded up to 12 bytes (3 words).

In the absence of a specification of a collection size, the collection is extended automatically if more objects
are allocated than possible in the collection originally allocated with the compiler-established default size. In this
case, STORAGEERROR is raised only when the available target memory is exhausted. If a collection size of
zero is specified, no access collection is allocated.

5.4.2.6. Specifceaton of Task Activation Size

The specification of a task activation size causes the task activation to be allocated with the specified size. It
is expressed in storage units; refer to package SYSTEM for the meaning of storage units.

If the storage specified for a task activation (T' Storage_Size) is not a multiple of 4096 (one page), the
compiler allocates the next higher multiple of 4096, as permitted by the language.

Any attempt to exceed the activation size during execution causes a STORAGEERROR exception to be
raised. Unlike collections, there is no extension of task activations.

5.42.7. Specficadon of' SMALL

Only powers of 2 are allowed for ' SMALL.

The length of the representation may be affected by this specification. If a size specification is also given for
tie type, the size specification takes precedence; the specification of ' SMALL must then be accommodatable
within the specified size.

5.4.3. Enumeration Representation Clauses
For enumeration representation clauses [LRM 13.3], the following restrictions apply:

* The internal codes specified for the literals of the enumeration type may be any integer value between
INTEGER' FIRST and INTEGER' LAST. It is Strongly advised to not provide a representation clause that
merely duplicates the default mapping of enumeration types, which assigns consecutive numbers in as-
ceanding order starting with 0, since unnecessary runtime cost is incurred by such duplication. It should be
nosed that the use of attributes on enumeration types with user-specified encodings is costly at run time.

• Affay types, whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the array involves a runtime translation of the index
value into the corresponding position value of the enumemtion type.

USER MANUAL FOR TARTAN ADA SUN 960

5.4.4. Record Representation Clauses
The alignment clause of record representation clauses [LRM 13.4] is observed.
Static objects may be aligned at powers of 2 up to a page boundary. The specified alignment becomes the

minimum alignment of the record type, unless the minimum alignment of the record forced by the component
allocation and the minimum alignment requirements of the components is already more stringent than the
specified alignment.

The component clauses of record representation clauses are allowed only for components and discriminants
of statically determinable size. Not all components need to be present. Component clauses for components of
variant parts are allowed only if the size of the record type is statically determinable for every variant.

The size specified for each component must be sufficient to allocate all possible values of the component
subtype (but not necessarily the component type). The location specified must be compatible with any alignment
constraints of the component type; an alignment constraint on a component type may cause an implicit alignment
constraint on the record type itself.

If some, but not all, discriminants and components of a record type are described by a component clause, then
the discriminants and componente wi, out component clauses are allocated after those with component clauses;
no attempt is made to utilize gaps k tL by the user-provided allocation.

5.4.5. Address clauses
Address clauses [LRM 13.5] are supported with the following restrictions:

When applied to an object, an address clause becomes a linker directive to allocate the object at the given
address. For any object not declared immediately within a top-level library package, the address clause is
accepted but meaningless. Please refer to section 8.10 for details on how address clauses relate to linking;
refer to section 12.2 for an example.

*Address clauses applied to local packages are not supported by Tartan Ada. Address clauses applied to
library packages are prohibited by the syntax; therefore, an address clause can be applied to a package only
if it is a body stub.

*Address clauses applied to subprograms and tasks are implemented according to the LRM rules. When
applied to an entry, the specified value identifies an interrupt in a manner customary for the target.
Immediately after a task is created, a runtime call is made for each of its entries having an address clause,
establishing the proper binding between the entry and the interrupt. Refer to section 10.2.7 for more
details. A specified address must be an Ada static expression.

" Address clauses specify virtual, not physical, addresses.

" When specifying absolute addresses, please note that the compiler will treat addresses as an INTEGER
type. This means that specifications of addresses may raise arithmetic overflow errors i.e., addresses must
be in the range INTEGER'FIRST. .INTEGER'LAST. To represent an address greater than
INTEGER' LAST, use the negated radix-complement of the desired address. For example, to express
address 16#COOO_000, specify instead -16#4000_000.

5.4.6. Pragma PACK
Pragma PACK [LRM 13.1] is supported. For details, refer to the following sections.

5.4.6.1. Pranm PACK for A rays
If pragma PACK is applied to an array, the densest possible representation is chosen. For details of packing,

refer to the explanation of size specifications for arrays (Section 5.4.2.3).

If, in addition, a length clause is applied to

C,

APPENDIX FTO MIL-STD-ISISA

1. The array type, the pragma has no effect, since such a length clause already uniquely determines the array
packing method.

2. The component type, the array is packed densely, observing the component's length clause. Note that the
component length clause may have the effect of preventing the compiler from packing as densely as
would be the default if pragma PACK is applied where there was no length clause given for the com-
ponent type.

5.4.6.2. The Predefined Type Sting

Package STANDARD applies Pragma PACK to the type string.

However, when appied to character arrays, this pragnma cannot be used to achieve denser packing than is the
default for the target 4 characters per 32-bit word.

5.4.6.3. Pragmn PACKfor Records

If pragma PACK is applied to a record, the densest possible representation is chosen that is compatible with
the sizes and alignment constraints of the individual component types. Pragma PACK has an effect only if the
sizes of some component types are specified explicitly by size specifications and are of non-referable nature. In
the absence of pragnm PACK, such components generally consume a referable amount of space.

It should be noted that the default type mapping for records maps components of boolean or other types that
require only a single bit to a single bit in the record layout, if there are multiple such components in a record.
Otherwise, it allocates a referable amount of storage to the component.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of some but not all components, the pragma PACK affects only the components whose allocation has
not been detailed. Moreover, the strategy of not utilizing gaps between explicitly allocated components still
applies.

5.4.7. MinimalAlignment for Types
Certain alignment properties of values of certain types are enforced by the type mapping rules. Any represen-

tation specification that cannot be satisfied within these constraints is not obeyed by the compiler and is ap-
propriatly diagnosed.

Alignment constraints are caused by properties of the target architecture, most notably by the capability to
extract non-aligned component values from composite values in a reasonably efficient manner. Typically, restric-
tions exist that make extraction of values that cross certain address boundaries very expensive, especially in
contexts involving array indexing. Permitting data layouts that require such complicated extractions may impact
code quality on a broader scale than merely in the local context of such extractions.

Instead of describing the precise algorithm of establishing the .ninimal alignment of types, we provide the
general rule that is being enforced by the alignment rules:

No object of scalar type including components or subcomponents of a composite type, may span a target-
dependent address boundary that would mandate an extraction of the object's value to be performed by two
or more extractions.

5.5. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS
The only implementation-dependent components allocated by Tartan Ada in records contain dope information

for arrays whose bounds depend on discriminants of the record. These components cannot be named by the user.

USER MANUAL FOR TARTAN ADA SUN 960

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES
Section 13.5.1 of the Ada Language Reference Manual describes a syntax for associating interrupts with task

entries. Tartan Ada implements the address clause

for TOENTRY use at intID;
by associating the interrupt specified by intID with the toentry entry of the task containing this address
clause. The interpretation of int ID is both machine and compiler dependent.

The Ada runtimes provide interrupts that may be associated with task entries. These interrupts are of type
System.Address in the ranges 8.243, 252..255. 264..499, and 508..511.

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS
Tartan supports UNCHECKEDCONVERSION with a restriction that requires the sizes of both source and

target types to be known at compile time. The sizes need not be the same. If the value in the source is wider than
that in the target, the source value will ,, truncated. If narrower, it will be zero-extended. Calls on instantiations
of UNCHECKEDCONVERSION are made inline automatically.

5.8. IMPLEMENTATION-DEPENDENT ASPECTS OF INPUT-OUTPUT PACKAGES
Tartan Ada supplies the predefined input/output packages DIRECT 10, SEQUENTIAL 10, TEXTIO, and

LOW LEVEL io as required by LRM Chapter 14. However, since 80960MC processor is used in embedded
applications lacking both standard 1/0 devices and file systems, the functionality of DIRECTIO,
SEQUENTIAL_IO, and TEXTiO is limited.

DIRECT IO and SEQUENTIALIO raise USEERROR ifa file open or file access is attempted. TEXT 10
is supported to CURRENT OUTPUT and from CURRENT INPUT. A routine that takes explicit file names raises
USE ERROR. LOWLEVEL_10 for 80960MC processor provides an interface by which the user may read and
write from memory mapped devices. In both the SENDCONTROL and RECEIVECONTROL procedures, the
device parameter specifies a device address while the data parameter is a byte, halfwcrd, word, or doubleword of
data transferred.

5.9. OTHER IMPLEMENTATION CHARACTERISTICS
The following information is supplied in addition to that required by Appendix F to MIL-STD-1815A.

5.9.1. Definition of a Main Program
Any Ada library subprogram unit may be designated the main program for purposes of linking (using the

AL960 LINK command) provided that the subprogram has no parameters.

Tasks initiated in imported library units follow the same rules for termination as other tasks [described in
LRM 9.4 (6-10)]. Specifically, these tasks are not terminated simply because the main program has terminated.
Terminate alternatives in selective wait statements in library tasks are therefore strongly recommended.

5.9-2. Implementation of Generic Units
All instantiations of generic units, except the predef-med generic UNCHECKED CONVERSION and

UNCHECKED DEALLOCATION subprograms, are implemented by code duplications. No attempt at sharing
code by multiple istantiations is made in this release of Tartan Ada.

Tartan Ada enforces the restriction that the body of a generic unit must be compiled before the unit can be
instantiated. It does not impose the restriction that the specification and body of a generic unit must be provided
as part of the same compilation. A recompilation of the body of a generic unit will casue any units that
instantiated this generic unit to become obsolete.

I

APPENDIX FTO MIL-STD-115A

5.9.3. Attributes of Type Duration
The type DURATION is defined with the following characteristics:

Attribute Value

DURATION'DELTA 0.0001 sec

DURATION' SMALL 0.0061 Sec

DURATION' FIRST -86400.0 sec

DURATION' LAST 86400.0 SeC

5.9.4. Values of Integer Attributes

Tartan Ada supports the predefined integer type INTEGER. The range bounds of the predefined type
INTEGER are:

INTEGER' FIRST is -2**31
INTEGER' LAST is 2**31-1

LONG INTEGER' FIRST is -2"*63
LONGINTEGER' LAST is 2*63-1

SHORTINTEGER' FIRST is -2**15
SHORTINTEGER' LAST is 20*15-1

BYTE INTEGER' FIRST is -128

BYTEINTEGER' LAST is 127

The range bounds for subtypes declared in package TEXT_10 are:

COUNT' FIRST is 0
COUNT' LAST is INTEGER' LAST -1

POSITIVE COUNT' FIRST is 1
POSITIVE-COUNT' LAST is INTEGER' LAST- 1

FIELD' FIRST is 0

FIELD' LAST is 20

The range bounds for subtypes declared in packages DIRECT_10 are:

COUNT' FIRST is 0
COUNT' LAST is INTEGER' LAST

POSITIVECOUNT' FIRST is l
POSITIVECOUNT' LAST is COUNT' LAST

5.9.5. Ordinal Types
Ordinal types are supported via a separate package, which is included with the standard packages. Package

OrdinalSupport provides support for unsigned arithmetic, including functions which convert between
Integer and Ordinal types, and a complete set of Ordinal arithmetic operations. The specification of package
Ordinal_Support may be found in the appendix.

USER MANUAL FOR TARTAN ADA SUN 960

5.9.6. Values of Floating-Point Altibutes
Tartan Ada supports the predefined floating-point types FLOAT, LONGFLOAT, and EXTENDEDFLOAT.

Attribute Value for FLOAT

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 16#0. I 000_000#E-4
approximately 9.536743E-07

SMALL 16#0.8000_()0#E-21
approximately 2.58494E-26

LARGE 16#0.FFFF_F80#E+21
approximately 1.93428E+25

SAFEEMAX 126

SAFESMALL 16#0.2000_000#E-31
approximately 5.87747E-39

SAFE LARGE 16#0.3FFF_FE0#E+32
approximately 8.50706+37

FIRST -16#0.7FFF_FFC#E+32
approximately -1.70141E+38

LAST 16#0.7FFF..FFC#E+32
approximately 1.70141E+38

MACHINERADIX 2

MACHINEMANTISSA 24

MACHINEEMAX 126

MACHINE EM=N -126

MACHINEROUNDS TRUE

MACHINEOVERFLOWS TRUE

APPENDIX F 7 MIL-STD-1S15A

Attribute Value for LONG FLOAT

DIGITS 15

MANTISSA 51

EMAX 204

EPSILON 164K.40000000_0000_000#E-12
approximately 8.8817841970013E-16

SMALL 16#0.8000_-0000_0000_000#E-51
approximately 1.944692274331&E-62

LARGE 1640.FFFFFFFF_FFFF_-EOO#E+51
approximately 2.571 1008708143E+61

SAFEEMAX 1022

SAFESMALL 16#0.2000_00(LOOO...000#E-255
approximately 1.1125369292536-308

ZAFELARGE l6#0.3FFFJFFF_FFFFFSO#E+256
approximately 4.4942328371557E+307

FIRST i6#0.7FFFFFFFFFFjE#E+256
approximately -8.988465674312E+307

LAST l6#0.7FFFj.FFFF_FFFF_.FEO#E+256
approximately 8.98846567431 15E+307

MACHINERADIX 2

MACHINEMANTISSA 51

MACHINEEMAX 1022

MACHINEEMIN -1022

MACHINEROUNDS TRUE

MACHINE-OVERFLOWS TRUE

USER MANUAL FOR TARTAN ADA SUN 960

Attribute Value for EXTENDED FLOAT

DIGITS 18

MANTISSA 61

EMAX 244

EPSILON 16#0.1000)000_0000_0000.0#E-14
approximately 8.67361737988403547E- 19

SMALL 160.8000_000_0000_000030#E-61
approximately 1.76868732008334226E-74

LARGE 16#0.FFFFFFFFFFFFFF8J0#E+61
approximately 2.82695530364541493E+73

SAFEEMAX 16382

SAFE-SMALL 16#0.2000_0000.0_00000000#E-4096
approximately 1.68105157155604675E-4932

SAFELARGE 16#0.3FFFFFFF FFFFFFFF_0#E+'.096
approximately 2.97432873839307941E+4931

FIRST -16#0.7FFFFFFFFFFFFFFF_8#E+4096
approximately -5.94865747678615883E+4931

LAST 16#0.FFFFFFFFFFFFFFF_8#E+4096
approximately 5.94865747678615883E+4931

MACHINERADIX 2

MACHINEMANTISSA 63

MACHINEEMAX 16382

MACHINEEMIN -16382

MACHINEROUNDS TRUE

MACHINEOVERFLOWS TRUE

L

APPENDIX F TO MIL-STD-1815A

5.10. SUPPORT FOR PACKAGE MACHINECODE
Package MACHINECODE provides the programmer with an interface through which to request the genera-

tion of any instruction that is available on the 80960. The Tartan Ada Sun 960 implementation of package
MACHINE CODE is similar to that described in Section 13.8 of the Ada LRM, with several added features. Refer
to appendix A of this manual for the specification for package MACHINECODE.

5.10.1. Basic Information
As required by LRM, Section 13.8, a routine which contains machine code inserts may not have any other

kind of statement, and may not contain an exception handler. The only allowed declarative item is a use clause.
Comments and pragmas are allowed as usual.

5.10.2. Instructions
A machine code insert has the form TYPEMARK' RECORDAGGREGATE, where the type must be one of the

records defined in package MACHINE_CODE. Package MACHINECODE defines four types of records. Each
has an opcode and zero to 3 operands. These records are adequate for the expression of all instructions provided
by the 80960.

5.10.3. Operands
An operand consists of a record aggregate which holds all the information to specify it to the compiler. All

operands have an address mode and one or more other pieces of information. The operands correspond exactly to
the operands of the instruction being generated.

5.10.3.1. Address Modes

Each operand in a machine code insert must have an AddressModeName. The address modes provided in
package MACHINE_ CODE provide access to all address modes supported by the 80960.

In addition, package MACHI_ CODE supplies the address modes SymbolicAddress and
Symbolic _Value which allow the use to refer to Ada objects by specifying Object ADDRESS as the value
for the operand. Any Ada object which has the 'ADDRESS attribute may be used in a symbolic operand.
SymbolicAddress should be used when the operand is a true address (that is. a branch target or the source
of an LDA instruction). Symbolic-Value should be used when the operand is actually a value (that is. one of
the source operands of an ADD instruction).

When an Ada object is used as a source operand in an instruction (that is, one from which a value is read), the
compiler will generate code which fetches the value of the Ada object. When an Ada object is used as the
destination operand of an instruction, the compiler will generate code which uses the address of the Ada object as
the destination of the insaction. See section 5.10.10 for further details.

5.10.4. Examples
The Tartan Ada Sun 960 implementation of package MACHINECODE makes it possible to specify

both simple machine code inserts such as

two format' (MOV, (RegLit, 5), (Reg, R5))

and more complex inserts such as

threeformat'(MULI,
(SymbolicValue, ArrayVar(X, Y, 27)'ADDRESS),
(Lit, 123456),
(SymbolicAddress, Parameter 1'ADDRESS))

In the first example, the compiler will emit the instruction mov 5, r5. In the second example, the compiler
will run emit whatever instructions mw needed to fom the addres of Array Var (X, Y, 27), load the
value found at that addres into a register, load 123456 into a regism, md then emit the MULI instrction. If
P ar amer I iq nnt fn ,rd in 9 register. the conmiler will out the reiult of the multiplication in a temrorarv

.L.

USER MANUAL FOR TARTAN ADA SUN 960

register and then store it to Parameter_1' ADDRESS. Note hat the destination operand of the MULi instruc-
tion is given as a Symbolic _Address. This holds tre for all destination operands The various error checks
specified in the LRM will be performed on all compiler-generated code unless they ae suppressed by the
programmer (either through pragma SUPPRESS, or through command qualifiers).

5.10.5. Incorrect Operands
Under some circumstances, the compiler attempts to correct incorrect operands. Three modes of operation

are supplied for package MACHINECODE: -Fixup-None, -Fixup-Warn and -Fixup-Quibt. These
modes of operation determine whether corrections are attempted and how much information about.the necessary
corrections is provided to the user. -Fixup-Quiet is the default.

In -Fixup-None mode, the specification of incorrect operands for an instruction is considered to be a fatal
error. In this mode, the compiler will not generate any extra instructions to help you to make a machine code
insertion. Note that it is still legal to use ' ADDRESS constructs as long as the object which is used meets the
requirements of the instruction.

In -Fixup-Quiet mode, if you specify incorrect operands for an instruction, the compiler will do its best
to fix up the machine code to provide the desired effect. For example, although it is illegal to use a memory
address as the destination of an ADD instruction, the compiler will accept it and try to generate correct code. In
this case, the compiler will allocate a temporary register to use as the destination of the ADD, and then store from
that register to the desired locauon in memory.

In -Fixup-Warn mode, the compiler will also do its best to correct any incorrect operands for an instruc-
tion. However, a warning message is issued stating that the machine code insert required additional machine
instructions to make its operands legal.

The compiler will always emit the instruction named in the machine code insert - even if it was necessary to
fix up all of its operands. In extreme cases this can lead to surprising code sequences. Consider, for example, the
machine code insert

TwoFormat' (MOV, (Req_Ind, GO), (Req Ind.Diap, G1, 128))

The MOV instruction requires two registers, but both operands are memory addresses. The compiler will generate
a code sequence like

ld (gO), g12
mov g12, g13
s3t g13, 128(gl)

Note that the MOV instruction is generated even though a LD ST combination would have been suffiCient. As a
result of always emitting the instruction specified by the programmer, the compiler will never optimize away
instructions which it does not understand (such as SENDSERV), unless they are unreachable by ordinary control
flow.

5.10.6. Assumptions Made in Correcting Operands

When compiling in /Fixup- [WARN, QUIET] modes, the compiler attempts to emit additional code to
move "the right bits" from an incorrect operand to a place which is a legal operand for the requested instruction.
The compiler makes certamin basic assumpions when performing these fixups. This section explains the assump-
tions the compiler makes and their impications for the generated code. Note that if you want a coerection which
is different from that performed by the compiler, you must make explicit machine-code insertions to perform
it.

For somre opemandr

@ Symbolic Address means that th address specified by the 'ADDRESS expreion is ued as the
mce bits When the Ada object specified by the, ADDRESS instruction is bound to a register. this will

came a compile-thme eror message because it is not posible to "take he address" of a register.

0 Symbolic Value means hat the vlue found at de address specified by the ' ADDRESS expression will
be used aq the sowee bits. An Ada obiect which is bound to a rerister Is correct here, because the contents

APPENDIX F TO MIL-STD-1815A

" Label indicates that the address of the label will be used as the source bits.

" Any other non-register means that the value found at the address specified by the operand will be used as
the source bits.

For destination operands:

" Symbolic Address means that the desired destination for the operation is the address specified by the
, ADDRESS expression. An Ada object which is bound to a regisWe is correct here; a register is a legal
destination on the 960.

" Symbolic Value means that the desired destination for the operations is found by fetching 32 bits from
the address specified by the ' ADDRESS expression, and storing the result to the address represented by the
fetched bits. This is equivalent to applying one extra indirection to the address used in the
SymbolicAddress case.

* All other operands are interpreted as directly specifying the destination for the operation.

Table 5-1 below describes the correction attempted for each possible instruction-operation combination. The
actions shown in the table have the following meanings:

Load to Register I The operand given represents a memory location, but the instruction requires a register.
The operand is used as a source. The compiler will load from the operand to a tem-
porary register.

Load to Register 2 The operand given represents a register, but the instruction requires a memory location.
The operand is a destination. The compiler will store the result value to a scratch
memory location, and then load it into the specified register.

Store to Memory I The operand given represents a register, but the instruction requires a memory location.
The operand is a source. The compiler will store the value to a scratch memory location
so that it will be in the proper place for the instruction.

Store to Memory 2 The operand given represents a memory location, but the instruction requires a register.
The operand is a destination. The compiler will allocate a scratch register, use that as
the destination for the instruction, and then store the result value to the specified
memory address.

Store to Memory 3 The operand given is not the address of a labeL The operand %ill be stored to a scratch
memory location, and then used as the indirect branch target.

Error I The only incorrect operand for the source of an LDA is a register. It is not possible to
take the address of a register on the 960.

Error 2 The operand must be a Label' Address.

last Opudl Opud2 Op Zd3
addo, addi, addc, addr,
addrl Load to Register I Load to Register I Store to Memory 2

alterbit Load to Register I Load to Register I Store to Memory 2

and, andnot Load to Regiswr I Load so Register I Stare to Memory 2

atadd Load to Register I Load to Register I Store to Memory 2

sm, and Load to Register I Lad o Register I Store to Memory 2

amnod Load to Register I Load to Register I Store to Memory 2

Table 5-1: MachineCods Fixup Opustitas

USER MANUAL FOR TARTAN ADA SUN 960

Inst Opudl Opnd2 Opnd3

b Errr2
bx Store to Memory 3

bal Error 2

balx Store to Memory 3

bbc, bbs Load to Register I Load to Register I Error 2

BRANCH IF Error 2

call Error 2

calls Load to Register 1

calix Store to Memory 3

chkbit Load to Register I Load to Register I

classr, classrl Load to Register 1

cirbit Load to Register I Load to Register I Store to Memory 2

cmpi, cmpo Load to Registerl Load to Register I

cmpdeci, cmpdeco Load to Register 1 Load to Register 1 Store to Memory 2

cmpinci cmpinco Load to Register 1 Load to Register I Store to Memory 2

cmpor, cmporl Load to Register I Load to Register 1

cmpr, cmprl Load to Register I Load to Register I

cmpstr Load to Register I Load to Register I Load to Register 1

COMPARE AND
BRANCH Load to Register I Load to Register 1 Error 2

cmcmpi. €onupo Lo to Register LoAW to Regir _ _

condrec Lod to 1eit LAWd e Resister 1
corwait LA o Regstaer I

cosr, cosri Load to Register I Store to Memory 2

cpyrsre. cpysre Load to Register I LAd to Register 1 Store to Memory 2

Load to Register 1 (64
cvtilr bits) Store to Memory 2

cvtir Load to Register I Stoe to Memory 2

cvtri Load o Register I Store Memory 2

Store to Munmy 2 (64
cvtril Load to Regiser I bits)

cvtwi Load to Register 1 Sunr to Mummy 2

Sore to Memoq 2 (64
cvmwil Load to Register I bits)

dadd Load to Rgist I Loa to Register I Sure to Memory 2

d Loa to Raistur 1 Loa to Rester I Ste to Momy 2

Lk'

APPENDDC F TO MIL-STD-1t ISA

host Opudi Opud2 Opud3

dmovt Load to Register 1 Stor to Memory 2

dsubc Load to Register I Load to Register I Store to Memory 2
Load to Registe 1 (64 Store to Memory 2 (64

ediv Loadto Register I Bits) bits)
Store to Memory 2 (64

cmiii Load to Register 1 Lad to Register I bits)

expr, expri Load to Register I Store to Memory 2

exw Load to Register 1 Load to Register 1 Store to Memory 2

FAULT IF

fill Load to Register 1 Load to Register 1 Load to Register 1

fma&
inspacc Lood to Register I Store to Memory 2

LOAD Store to Memory 1 Store to Memory 2

Ida Error Store to Memory 2 _ _ _ _

hdphy Load to Register 1 Store to Memory 2

Iduime Store to Memory 2

Iogbnr, Iogbnri Load to Register I Store to Memory 2

IogeW. WogPM Load to Registe I Store to Memory 2

logriogri Load to Register I Store to Memory 2 ~~ M

modic Load to Register I Load to Register I Store to Memory 2

modif Load to0 Register I Load to Register I tr to Memory 2
modify Lad to Register I Load to Register I Store to Memory 2

medic Load to Register I LAd to Register 1 Store to Memory 2

MOVE Load to Register I Store to Memory 2

movqst. movsir Load to Register I Load to Register 1 Load to Register I

mulo, muli, muir,
muinl Loawd to Regite 1 Load to Register I Stare to Memnory 2
nond LAd to Register I LoaDW to Rgter I Store to Memory 2

aie Load to Register I Load to Register I Store to Memory 2

am Lad to Register I Suor to Memory 2

nomad Load to Register 1 Load to Regiswe I Store to Memory 2

nooks Load to Register I Load to Regste I tSim to Memory 2

Table 3-1: Machime.Code Pixup Operatons

USER MANUAL FOR TARTAN ADA SUN 960

Inst Opudi Opad2 Opnd3

notor Load to Register 1 Load to Register 1 Store to Memory 2
or, ornot Load to Register 1 Lad to Regista 1 Store to Memory 2

recieve Lo~ad to Register 1 Load to Register 1

remo, remi, remr,
reirl Load to Register 1 Load to Registe 1 Store to Memory 2

rcsumprcs Load to Register 1

ret
rotate Load to Register 1 Lad to Registe 1 Store to Memory 2

roundr, roumdrl Load to Register 1 Store to Memory 2

saveprcs_____________________

scaler, scaleri Load to Register 1 Lad to Register 1 Store to Memory 2

scanbit Load to Register 1 Store to Memory 2

scanbyte Load to Register 1 Lad to Registe I

schedprcs Load to Register 1

send Load to Register 1 Lad to Register 1 Lad to Register 1

sendserv LAd to Register 1

setbit Lo~ad to Registe 1 Load to Registe 1 Store to Memory 2

SHIFT Load to Register 1 Load to Registe 1 Store to Memory 2
signal Load to Register 1

sinr, sinrl Load to Register 1 Store to Memory 2

spanbit Load to Register I Store to Memory 2

sqrtr. Sqrtrl Load to Register 1 Store to Memory 2

STORE Load to Register 1 Load To Register 2

subo, subi, subc, subr,
subri Load to RegisterlI Load to RegisterlI Store to Memory 2

synid Load to Register 1 Store to Memory. 2

synmov, synmovi, syn-
movq Load To Register 1 LAd to Register 1

tarn tain Load to Registe I Store to Memory 2
TEST Store to Memsory 2
wait LoAWto Regl 1,_ __ _

Xnor xor Load to Register I Load to Register 1 Store to Memory 2

Table 5-1: Mwchne..Code Fixup.Opemtians

APEND IX F TO MIL-STD-IS1SA

5.10.7. Register Usage
Since the compiler may need to allocate rgse as temporary storage in machine code routines, there are

some resrictions placed on your register usage. The compiler will automatically free all the registers which
would be volatile across a call for your use (that is, gO..g7, g13, and g14). If you reference any other register, the
compiler will reserve it for your use until the end of the machine code routine. The compiler will not save the
register automatically. This means that the first reference to a register which is not volatile across calls should be
an insmrction which saves its value in a safe place. The value of the register should be restored at the end of the
machine code routine. This rule will help ensure correct operation of your machine code inset even if it is inline
expanded in another routine.

The compiler may need several registers to generate code for operand fixups in machine code inserts. If you
use all the registers, fixups will not be possible. If a fixup is needed, the compiler may require up to three
registers to guarantee success. In general, when more registers are available to the compiler it is able to generate
better code.

5.10.8. Inline Expansion
Routines which contain machine code inserts may be inline expanded into the bodies of other routines. This

may happen under programmer control through the use of pragna INLINE, or at Optimization Level 3 when the
compiler selects that optimization as an appropriate action for the given situation. The compiler will treat the
machine code insert as though it was a call; volatile registers will be saved and restored around it, etc.

5.10.9. Unsafe Assumptions

There are a variety of assumptions which should not be made when writing machine code inserts. Violation
of these assumptions may result in the generation of code which does not assemble or which may not function
correctly.

" Do not assume that a machine code insert routine has its own set of local registers. This may not be true if
the routine is inline expanded into another routine. Explicitly save and restore any registers which are not
volatile across calls. If you wish to guarantee that a routine will never be inline expanded, you should use
an Ada sepaate body for the routine and maie sure that there is no pragma INLINE for iL

" Do not attempt to move multiple Ada objects with a single long instrmction such as MOVL or STT.
Although the objects may be contiguous under the current circumstances, there is no guarantee that later
changes will permit them to remain contiguous. If the objects are parameters, it is virtually certain that
they will not be contiguous if the routine is inline expanded into the body of another routine. In the case of
locals, globals, and own variables, the compiler does not guarantee that objects which are declared tex-
tually "next" to each other will be contiguous in memory. If the source code is changed such that it
declares additional objects, this may change the storage allocation such that objects which were previously
adjacent are no longer adjacenL

" The compiler will not generate call site code for you if you emit a call instruction. You must save and
restore any volatile registers which currently have values in them, etc. If the routine you call has out
parameters,. a large function return result, or an unconstrained result, it is your responsibility to emit the
necesmry insmrctions to deal with these comrts as the compiler expects. In other words, when you emit
a call, you must follow the linkage conventions of the routine you are calling. For further details on call
site code, see Sections 6A. 63 and 6.6.

" Do not assume that th IADDRESS on SymbolicAddress or Symbolic Value operands means
that you an getting an ADDRESS so operate on. Tbe Address- or Value-ness ofin operad is determined
by your choice of Symbol c.Address or Symbolic-value. This mea that to add the contents of
X to 6, you Wud write

Three Format' (ADDI, (Symbolic Value, X'ADDRESS),
(Req, R3), (Req, R3));

* - q:.i , r.•. -t . * 3 _

USER MANUAL FOR TARTAN ADA SUN 960

ThreeFormat' (ADDI, (Symbolic Address, X'ADDRESS),
(Reg, R3), (Reg, R3));

* The compiler will not prevent you from writing register r3 (which is used to hold the address of the current
exception handler). This provides you the opportunity to make a custom exception handler. Be aware,
however, that thee is considerable danger in doing so. Knowledge of the details on the structure of
exception handlers will help; see the Tartan Ada Rwabne Implementor's Guide.

5.10.10. Limitalions

" When specifying absolute addresses in machinecode inserts, please note that the compiler will treat
addresses as an INTEGER type. This means that specifications of addresses may raise arithmetic overflow
errors; i.e., addresses must be in the range INTEGER' FIRST.. INTEGER' LAST. To represent an
address greater than INTEGER' LAST, use the negated radix-complement of the desired address. For
example, to express address 16#C000 000, specify instead -16#4000_000.

* The current implementation of the compiler is unable to fully support automatic fixup of certain kinds of
operands. In particular, the compiler assumes that the size of a data object is the same as the number of
bits which is operated on by the instruction chosen in the machine code insert. This means that the insert:

ThreeFormat' (ADDO, (SymbolicValue, ByteVariable'ADDRESS),
(Reg, RO), (Reg, RI))

will not generate correct code when ByteVariable is bound to memory. The compiler will assume
that ByteVariable is 32 bits, when in fact it is only 8, and will emit an LD instruction to load the
vlue of Byte_Variable into a register. If, on the other hand, Byte-Variable was bound to a
register the insertion will function properly, as no fixup is needed.

* The compiler generates incorrect code when the BAL and BALX instructions are used with symbolic
operands which are not of the form Routine' ADDRESS. To get the effect of an unconditional branch,
use the B or BX instructions instead.

9 Note that the use of X' ADDRESS in a machine code insert does not guarantee that X will be bound to
memory. This is a result of the use of ' ADDRESS to provide a "typeless" method for naming Ada objects
in machine code inserts. For example, it is legal to say to (SymbolcValue, X'ADDRESS) in an
insert even when x is a formal parameter of the machine code routine (and is thus found in a register).

5.10.11. Example
package mtest is
typa ary type is array(1..4) of integer;

procedure iniine into me;
end mtest;

with machinecode;
use machine code;
package body mtest is

own var : integer :- -1;

procedure machtest(x, y, z: in integer; ary: in out ary type) is
begin

-- The next instruction is only OK if this routine is not INLINED.
-- If the routine is inlined, there is no guarantee that parm X will
-- be either A) in an even numbered register, or B) "next to" parm
-- Y. If the programmer uses an instruction like MOVLp here, he is
-- assuming too much about the generated code; his program is
-- erroneous. On the other hand, the use of x'ADDRESS does guarantee
-- that the instruction will use X even when this routine is inline
-- excanded irto a caller.

APPENDIX F TO) NaL-SD-IS ISA

Two_-Format' (MOVL, (Symbolic Value, x'ADDRESS), (Reg, G6));
Two Format' (MOV, (Symbolic-Value, x'ADDRESS), (Reg, G6));
TwoFormat' (MOV, (Symbolic -Value, y'ADDRESS), (Reg, G7));
Two Format'(MOV, (Symbolic Value, z'ADDRESS), (Reg, GB));
ThreFormat' (ADDI, (SymbolicValue, x'ADDRESS), (Reg, GB), (Reg, Gil));

ThreeFormat' (MtJLI,
(Reg, G7) ,
(SymbolicValue, y'ADDRESS),
(Reg, G12));

-Note the use of a complicated Ada object in this instruction.
TwoFormat' (ST,

(Reg. G12),
(Symbolic-Address, ary(l) 'ADDRESS));

-In this instruction, note that ary(l)'ADDRESS is NOT kept in a
-register and is thus NOT a legal source for XORp. That's OK,
-because the compiler can fix it up for the user.

ThreeFormat'(XORi, (Symbolic_Value, ary(l)'ADDRESS),
(Symbolic_Value, ary(2)'ADDRESS), (Reg, G12));

TwoFormat' (ST,
(Reg. G12),
(Symbolic-Address, aryM3) ADDRESS))

TwoFormat' (ST,
(Reg, G12),
(SymbolicAddress, ary (x)ADDRESS))

TwoFormat' (ST.
(Reg, GO),
(Symbolic-Address, own var'ADDRESS));

woFormat' (LDA,
(SymbolicValue, own_var'ADDRESS),
(Reg. G14));

One -Format' (CALLX, (Symbolic-Address, inline into me'ADDRESS));
end mach test;
pragma inline (mach test);

procedure mtestl(first, second, third: in integer; fourth: out ary type) is
begin

-Note the use of fourth(l)'ADDRESS as the destination of the MOV
-instruction. The compiler will understand that the user "really
-wanted" something moved to fourth(l)'ADDRESS, and will make sure
-that the bits get there. The compiler does NOT assume that it
-knows enough to second guess the user's choice of instructions.
-we generate the MOV, followed by a store to memory.

Two Format' (MOV,
(SymbolicValue, First'Address),
(SymbolicAddress, fourth(1) ADDRESS))

end mtestl;

procedure inline into me is
arrayl : ary type :- (1, 2, 3, 4);

begin
if arrayl(3) >- 0 then

-note that mach test is inline expanded
mach test(22, 41, arrayl(4), arrayl);

else
-but mtest is not at Op-2 (No pragma inline)

r mtestl(l, 2, 3, arrayl);
0"01 'U

USER MANUflAL FOR TARTAN ADA SUN 960

end inline_into-me;

end miest;

APPENDIX F TO MIL-STD-181SA

Assembly code output:
Generated from USER01: [SMITH]MTEST.ADB;1
by TARTAN Ada Compiler VMS 80960MC, Version Pre-Release

.data

.align 2
ADA.OWN- .space 4

.align 2
ADA. GLOBAL: .space 1

.glob!. xxmtest~inline into_rneSOO

.ql'obl xxmtest$declare

.glool xxmtest~body

.seto own_var$OO,ADA.OWN,C
.glob. xxmtest~inli4ne into me~goto$OO

.oo xxnrtest~inl-ine into-ine$gotoSCO,ADA.GLOBAL,O

* text

.align 4

xxmtestSinline into meSCO:
,nov O,r3
st sp,40(sp)
'da 40(sp),sp

gt 12,100(fp)
ida .L19,r3

nov 1,g13 *line 74

st g13,80(fp)
.nov 2,g13
st g13,84(fp)
nov 3q1l3
St gl3,88(fp)
mov 4,g13

st gl3,92(fp)
Idiq 80(fp),g4
stq g4,64(fp)
Id 72Cfp),913 *line 76

cmpibg O,gI3, .L 7
id 7(fp)913line 78

nov 22,r4
addc 31,10,r5
Mov 913,r6

1 da 64(fp),rB
movl r4,96
mov r4,g6
nov r5,g7
nov r6,g8
addi r4,gS.gl
mull, 97, r5, 912
at 912,96Cfp)
ld 96(fp),g-13
st ql3, (rS)
Id 4(r8br7
xor g.3,r7,gl2
st 912,6(rBI
subi 1,r4,913 *line 46

cmao q13,3

USER MANUAL FOR TARTAN ADA SUN 960

faultg
s t gl2,-4 (r8) [r4*41
st gO,ADA.OWN
Ida ADA.OWN,g14
calix xxmtest~inline into meSOG
b .L19 # line 76

.L17: mov l,qO # line 81

Mov 2,gl
mov 3,g2
Ida 64(fp),g3
bal mtestl$OO

.1,19:

ld 100(fp),gl2

ret

9 Total bytes of code in the above routine =216

.align 4

mach testSOO:
mov 0,r3
si sp..8(sp)
addo 8,sc,sp
st gl2,68(fp)
Ida .L2!,r3

movI gO,g6
mov gO,gE
.mov gig 7

rnov g2,gB
addi gO,gs,gl
mulli g7,gl,g12
st 912,64Cfp)
Id 64(fp),gl3
st gl3, (g3)
.1d 4(g3),g5
xor gl3,g5,gl2
st g12,8(g3)
subi 1,gOfg13 #line 46

c-npo gl3,3
faultg
St gl2,-4(93) !gO*4)
st gO,ADA.OWN
ida ADA.OWN~g14

.L': callx xxmtest~inline into meSCO

id 68(fp),gl2

ret

4Total bytes of code in the above routine =124

.align 4

mtest:SOO:
mlov g14,94
rnov 0,gl4

mov gO,g13
st 913, (g3)

APPEKDDC F TO MILTDISISA

Total bytes of code in the above routine =20

.align 4

xxmtest$declare:

stob g14,ADA.GLOBAL

ret

Total bytes of code in the above routine = 12

.align 4

xxmtest~body:

not 0,g13 # line 5

st913, ADA. OWN
mov l,gl.3
stob g13,ADA.GLOBAL

ret

Total bytes of code i n the above routine =28

*.ext

.align 2

.align 2
Total bytes of code - 400
Total bytes of data - 5

CHAPTER 1

INTRODUCTION

This Validation Sumary Report escribes the extent to vhich a

specific Ads compiler conforms to the Ada Standard, ASI/KIL-STD-1815A.This report explains all technical terms used within it and thoroughly

reports the results oL.La-ting this compiler using the Ada CompilerValidation Capability P"SCM . An Ada compiler. must be implemented

according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
most be implemented in its entirety, and nothing can be implemented that is
not in the Standard.N

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist betveen implementations.
The Ada Standard permits some implementation dependencies-for example, the
maximum length of identifiers or the maxuinmu values of integer types.
Other differences betveen compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
S4 X 4n t report.

The InformatiQn in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardised tests, the ACYC, as inputs to an Ada compiler and
evaluating the results.f.The purpose of validating is to ensure conformity
of the compiler to the 4 a Standard by testing that the compiler properly
implements legal constructs and that it identifies and rejects
illegal language construc a. The testing also identifies behavior that is
implementation-dependent Is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and dut execution.

Qie

